

 Navigation

 	
 index

 	Test Utils 0...1...0 documentation

Welcome to Python Test utils documentation!

Python test utils is a collection of different functions and classes which make
writing integration tests easier.

Installation

Latest stable version can be installed from PyPi using pip:

pip install test-utils

API Documentation

For API documentation, please see the API Documentation page.

Process Runner classes

ProcessRunner allows you to manage a long running process which needs to run
during your test process execution.

Process runner does this in three steps:

	Spawn a process before running the tests

	Wait for the process to come online

	Run the tests

	Stop the managed process

This long running process can be an API server, database, Twisted service or any
other long running process.

TCPProcessRunner class

TCPProcessRunner allows you to manage a long running process which exposes a
TCP interface. It detects if a process is running by connecting to the
specified IP and port.

Example usage

Licensed to Tomaz Muraus under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
Tomaz muraus licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
import os
import sys

from glob import glob
from os.path import splitext, basename, join as pjoin
from distutils.core import Command
from unittest import TextTestRunner, TestLoader

TEST_PATHS = ['tests']

class TestCommand(Command):
 description = 'run test suite'
 user_options = []

 def initialize_options(self):
 self._dir = os.getcwd()

 def finalize_options(self):
 pass

 def run(self):
 self._run_mock_api_server()
 status = self._run_tests()
 sys.exit(status)

 def _run_tests(self):
 testfiles = []
 for test_path in TEST_PATHS:
 test_files = glob(pjoin(self._dir, test_path, 'test_*.py'))
 for t in test_files:
 module_path = '.'.join([test_path.replace('/', '.'),
 splitext(basename(t))[0]])
 testfiles.append(module_path)

 tests = TestLoader().loadTestsFromNames(testfiles)

 t = TextTestRunner(verbosity=2)
 res = t.run(tests)
 return not res.wasSuccessful()

 def _run_mock_api_server(self):
 from test_utils.process_runners import TCPProcessRunner

 script = pjoin(os.path.dirname(__file__), 'tests/mock_http_server.py')

 for port in [8881, 8882, 8883]:
 args = [script, '--port=%s' % (port)]
 log_path = 'mock_api_server_%s.log' % (port)
 wait_for_address = ('127.0.0.1', port)
 server = TCPProcessRunner(args=args,
 wait_for_address=wait_for_address,
 log_path=log_path)
 server.setUp()

This example shows how TCPProcessRunner can be used in the
TestCommand in your setup.py file. It is used to start a mock
API server which runs for the whole duration of your test suite run.

Keep in mind that you need to call
test_utils.process_runners.TCPProcessRunner.setUp() function. This
function is responsible for starting the managed process and waiting for it
to come online.

For a real-life example you can have a look at python-yubico-client [https://github.com/Kami/python-yubico-client]
setup.py file [https://github.com/Kami/python-yubico-client/blob/1786926caf86e45155d40aae7d598d409ed184a3/setup.py#L36]. In this case, ProcessRunner is used to spawn multiple
mock API servers.

 Copyright 2013, Tomaz Muraus.
 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	Test Utils 0...1...0 documentation

Index

 S
 | T

S

 	

 	setUp() (test_utils.process_runners.TCPProcessRunner method)

T

 	

 	TCPProcessRunner (class in test_utils.process_runners)

 	

 	tearDown() (test_utils.process_runners.TCPProcessRunner method)

 Copyright 2013, Tomaz Muraus.
 Created using Sphinx 1.2.2.

 _static/ajax-loader.gif

_static/comment-close.png

_modules/index.html

 Navigation

 		
 index

 		Test Utils 0...1...0 documentation »

 All modules for which code is available

		test_utils.process_runners

 © Copyright 2013, Tomaz Muraus.
 Created using Sphinx 1.2.2.

_static/up.png

search.html

 Navigation

 		
 index

 		Test Utils 0...1...0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Tomaz Muraus.
 Created using Sphinx 1.2.2.

_static/comment.png

api.html

 Navigation

 		
 index

 		Test Utils 0...1...0 documentation »

API Documentation

		
class test_utils.process_runners.TCPProcessRunner(args, wait_for_address, wait_for_timeout=10, cwd=None, log_path='process.log')[source]

		Represents a long running process which exposes a TCP interface
and should be running during the test execution.

		Parameters:		
		args (list) – Arguments passed to the subprocess.Popen.

		wait_for_address (tuple (e.g. ('127.0.0.1', 8080))) – IP address and port to which we will connect
to, to determine if the process is running.

		wait_for_timeout (float) – How long to wait (in seconds) for the process
to start before giving up.

		cwd (str) – Working directory for the subprocess.Popen. (optional)

		log_path (str) – Path to the log file where the process output will be
saved. (optional)

		
setUp(*args, **kwargs)[source]

		Start a managed process and wait for it to come online.

		
tearDown(*args, **kwargs)[source]

		Terminate the running process.

Note: This function does not need to be called manually. Once you call
setUp() function it automatically registers this function to run
on the process exit.

 © Copyright 2013, Tomaz Muraus.
 Created using Sphinx 1.2.2.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

_modules/test_utils/process_runners.html

 Navigation

 		
 index

 		Test Utils 0...1...0 documentation »

 		Module code »

 Source code for test_utils.process_runners

Licensed to Tomaz Muraus under one or more
contributor license agreements. See the NOTICE file distributed with
this work for additional information regarding copyright ownership.
Tomaz muraus licenses this file to You under the Apache License, Version 2.0
(the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

from __future__ import with_statement

import os
import subprocess
import time
import socket
import atexit

__all__ = [
 'TCPProcessRunner'
]

[docs]class TCPProcessRunner(object):
 """
 Represents a long running process which exposes a TCP interface
 and should be running during the test execution.
 """
 def __init__(self, args, wait_for_address, wait_for_timeout=10, cwd=None,
 log_path='process.log'):
 """
 :param args: Arguments passed to the subprocess.Popen.
 :type args: ``list``

 :param wait_for_address: IP address and port to which we will connect
 to, to determine if the process is running.
 :type wait_for_address: ``tuple`` (e.g. ``('127.0.0.1', 8080)``)

 :param wait_for_timeout: How long to wait (in seconds) for the process
 to start before giving up.
 :type wait_for_timeout: ``float``

 :param cwd: Working directory for the subprocess.Popen. (optional)
 :type cwd: ``str``

 :param log_path: Path to the log file where the process output will be
 saved. (optional)
 :type log_path: ``str``
 """
 if not isinstance(args, (tuple, list)):
 raise ValueError('args argument must be a list or a tuple')

 if not isinstance(wait_for_address, (list, tuple)) or \
 len(wait_for_address) != 2:
 raise ValueError('wait_for_address must be a tuple with 2 '
 'elements')

 self._args = args or []
 self._cwd = cwd or os.getcwd()
 self._wait_for_address = wait_for_address
 self._wait_for_timeout = wait_for_timeout
 self._log_path = log_path

 self._process = None

[docs] def setUp(self, *args, **kwargs):
 """
 Start a managed process and wait for it to come online.
 """
 env = os.environ.copy()
 with open(self._log_path, 'a+') as log_fp:
 self.process = subprocess.Popen(self._args, shell=False,
 cwd=self._cwd, stdout=log_fp,
 stderr=log_fp,
 env=env)
 self._wait_for_running(self._wait_for_address,
 self._wait_for_timeout)

 atexit.register(self.tearDown)
 return self._process

 def _wait_for_running(self, address, timeout=10):
 """
 Wait for the process to come online.

 :param address: IP address and port to which we will connect
 to, to determine if the process is running.
 :type address: ``tuple`` (e.g. ``('127.0.0.1', 8080)``)

 :param timeout: How long to wait (in seconds) for the process to start
 before giving up.
 :type timeout: ``float``
 """
 process = self.process
 start = time.time()

 while time.time() < start + timeout:
 process.poll()

 if process.returncode:
 # Process exited early
 msg = ('Process failed to start and exited with code: %s.\n'
 'More info might be available in the following log '
 'file: %s' % (process.returncode, self._log_path))
 raise RuntimeError(msg)

 try:
 s = socket.create_connection(address)
 s.close()
 break
 except:
 time.sleep(0.5)
 else:
 process.poll()

 if process and process.returncode is None:
 process.terminate()

 raise RuntimeError('Couldn\'t connect to server')

[docs] def tearDown(self, *args, **kwargs):
 """
 Terminate the running process.

 Note: This function does not need to be called manually. Once you call
 :func:`setUp` function it automatically registers this function to run
 on the process exit.
 """
 if self.process:
 self.process.terminate()

 © Copyright 2013, Tomaz Muraus.
 Created using Sphinx 1.2.2.

_static/minus.png

